Emergent ferromagnetism and insulator-metal transition in δ-doped ultrathin ruthenates

Author:

Ali ZeeshanORCID,Saghayezhian Mohammad,Wang Zhen,O’Hara AndrewORCID,Shin Donghan,Ge Wenbo,Chan Ying Ting,Zhu YimeiORCID,Wu WeidaORCID,Pantelides Sokrates T.,Zhang Jiandi

Abstract

AbstractHeterostructures of complex transition metal oxides are known to induce extraordinary emergent quantum states that arise from broken symmetry and other discontinuities at interfaces. Here we report the emergence of unusual, thickness-dependent properties in ultrathin CaRuO3 films by insertion of a single isovalent SrO layer (referred to as δ-doping). While bulk CaRuO3 is metallic and nonmagnetic, films thinner than or equal to ~15-unit cells (u.c.) are insulating though still nonmagnetic. However, δ-doping to middle of such CaRuO3 films induces an insulator-to-metal transition and unusual ferromagnetism with strong magnetoresistive behavior. Atomically resolved imaging and density-functional-theory calculations reveal that the whole δ-doped film preserves the bulk-CaRuO3 orthorhombic structure, while appreciable structural and electronic changes are highly localized near the SrO layer. The results highlight delicate nature of magnetic instability in CaRuO3 and subtle effects that can alter it, especially the role of A-site cation in electronic and magnetic structure additional to lattice distortion in ruthenates. It also provides a practical approach to engineer material systems via highly localized modifications in their structure and composition that may offer new routes to the design of oxide electronics.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3