Abstract
AbstractWe study the physics of high-temperature cuprate superconductors starting from the highly degenerate four-site plaquette of the $$t-t^{\prime} -U$$
t
−
t
′
−
U
Hubbard model as a reference system. The degeneracy causes strong fluctuations when a lattice of plaquettes is constructed. We show that there is a large binding energy between holes when a set of four plaquettes is considered. The next-nearest-neighbour hopping $$t^{\prime}$$
t
′
plays a crucial role in the formation of these strongly bound electronic bipolarons whose coherence at lower temperature could be the explanation for superconductivity. A complementary approach is cluster dual fermion starting from a single degenerate plaquette, which contains the relevant short-ranged fluctuations from the beginning. It gives d-wave superconductivity as the leading instability under a reasonably broad range of parameters. The origin of the pseudogap is also discussed in terms of the coupling of degenerate plaquettes. Thus, some of the essential elements of cuprate superconductivity appear from the local plaquette physics.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献