Strongly correlated superconductor with polytypic 3D Dirac points

Author:

Borisenko SergeyORCID,Bezguba Volodymyr,Fedorov Alexander,Kushnirenko Yevhen,Voroshnin Vladimir,Sturza Mihai,Aswartham SaicharanORCID,Yaresko Alexander

Abstract

AbstractTopological superconductors should be able to provide essential ingredients for quantum computing, but are very challenging to realize. Spin–orbit interaction in iron-based superconductors opens the energy gap between the p-states of pnictogen and d-states of iron very close to the Fermi level, and such p-states have been recently experimentally detected. Density-functional theory predicts existence of topological surface states within this gap in FeTe1−xSex making it an attractive candidate material. Here we use synchrotron-based angle-resolved photoemission spectroscopy and band structure calculations to demonstrate that FeTe1−xSex (x = 0.45) is a superconducting 3D Dirac semimetal hosting type-I and type-II Dirac points and that its electronic structure remains topologically trivial. We show that the inverted band gap in FeTe1−xSex can possibly be realized by further increase of Te content, but strong correlations reduce it to a sub-meV size, making the experimental detection of this gap and corresponding topological surface states very challenging, not to mention exact matching with the Fermi level. On the other hand, the pd and dd interactions are responsible for the formation of extremely flat band at the Fermi level pointing to its intimate relation with the mechanism of high-Tc superconductivity in IBS.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3