Abstract
AbstractThe recently discovered magnetic topological insulators (MnBi2Te4)(Bi2Te3)n, n = 0–4, are an ideal playground to study the influence of magnetic properties on band topology, giving access to diverse quantum states in a single compound. In the low temperature-antiferromagnetic state and vanishing magnetic field, the n = 1 system is a topological insulator protected by a combination of time reversal and a translation symmetries. It has been argued that, when the antiferromagnetic phase is forced to a the fully spin polarized state by the application of an external magnetic field, this system develops Weyl cones in the conduction band, which become accessible in presence of an intrinsic electronic doping. In this work, we experimentally prove the raising of field-induced Weyl state through the detection of an intrinsic anomalous Nernst effect in a bulk single crystal of MnBi4Te7.
Funder
European Commission
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Reference44 articles.
1. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).
2. Fei, F. et al. The material efforts for quantized Hall devices based on topological insulators. Adv. Mater. 32, 1904593 (2020).
3. Weng, H., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).
4. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).
5. Vidal, R. C. et al. Topological electronic structure and intrinsic magnetization in MnBi4Te7: a Bi2Te3 derivative with a periodic Mn sublattice. Phys. Rev. X 9, 041065 (2019).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献