Multi-atom quasiparticle scattering interference for superconductor energy-gap symmetry determination

Author:

Sharma Rahul,Kreisel AndreasORCID,Sulangi Miguel Antonio,Böker Jakob,Kostin Andrey,Allan Milan P.,Eisaki H.,Böhmer Anna E.,Canfield Paul C.,Eremin Ilya,Séamus Davis J. C.ORCID,Hirschfeld P. J.,Sprau Peter O.

Abstract

AbstractComplete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α , for all momenta k on the Fermi surface of every band α. While there are a variety of techniques for determining $$|{\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha |$$ Δ k α , no general method existed to measure the signed values of $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α . Recently, however, a technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns, centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured, is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α it generates to the $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α determined from single-atom scattering in FeSe where s± energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α of opposite sign.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3