Abstract
AbstractThe chiral p-wave order parameter in Sr2RuO4 would make it a special case amongst the unconventional superconductors. A consequence of this symmetry is the possible existence of superconducting domains of opposite chirality. At the boundary of such domains, the locally suppressed condensate can produce an intrinsic Josephson junction. Here, we provide evidence of such junctions using mesoscopic rings, structured from Sr2RuO4 single crystals. Our order parameter simulations predict such rings to host stable domain walls across their arms. This is verified with transport experiments on loops, with a sharp transition at 1.5 K, which show distinct critical current oscillations with periodicity corresponding to the flux quantum. In contrast, loops with broadened transitions at around 3 K are void of such junctions and show standard Little–Parks oscillations. Our analysis demonstrates the junctions are of intrinsic origin and makes a compelling case for the existence of superconducting domains.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献