Abstract
AbstractThe Hall coefficient is related to the effective carrier density and Fermi surface topology in non-interacting and weakly interacting systems. In strongly correlated systems, the relation between the Hall coefficient and single-particle properties is less clear. Clarifying this relation would give insight into the nature of transport in strongly correlated materials that lack well-formed quasiparticles. In this work, we investigate the DC Hall coefficient of the Hubbard model using determinant quantum Monte Carlo in conjunction with a recently developed expansion of magneto-transport coefficients in terms of thermodynamic susceptibilities. At leading order in the expansion, we observe a change of sign in the Hall coefficient as a function of temperature and interaction strength, which we relate to a change in the topology of the apparent Fermi surface. We also combine our Hall coefficient results with optical conductivity values to evaluate the Hall angle, as well as effective mobility and effective mass based on Drude theory of metals.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献