Quantum Monte Carlo study of lattice polarons in the two-dimensional three-orbital Su–Schrieffer–Heeger model

Author:

Li ShaozhiORCID,Johnston StevenORCID

Abstract

AbstractThe electron–lattice interaction gives rise to a rich set of phenomena in quantum materials. Microscopically, this interaction often arises from the modulation of orbital overlaps; however, many theoretical studies neglect such couplings. Here, we present an exact diagonalization and determinant quantum Monte Carlo study of a three-orbital Su–Schrieffer–Heeger (SSH) model, on a two-dimensional Lieb lattice and in the negative charge transfer regime. At half-filling (one hole/unit cell), we observe a bipolaron insulating phase with a bond-disproportionate lattice. This phase is robust against moderate hole doping but is suppressed at large hole concentrations, leading to a metallic polaron-liquid-like state with fluctuating patches of local distortions. We also find an s-wave superconducting state at large hole doping that primarily appears on the oxygen sublattice. Our work provides a non-perturbative view of SSH-type couplings in two dimensions with implications for materials where such couplings are dominant.

Funder

DOE | Advanced Research Projects Agency - Energy

the Scientific Discovery through Advanced Computing Program

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3