Acidosis Induced by Hypercapnia Exaggerates Ischemic Brain Damage

Author:

Katsura Ken-Ichiro12,Kristián Tibor13,Smith Maj-Lis1,Siesjö Bo K.1

Affiliation:

1. Laboratory for Experimental Brain Research, Experimental Research Center, University of Lund, Sweden

2. Second Department of Internal Medicine, Nippon Medical School, Japan

3. Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia

Abstract

Although preischemic hyperglycemia is known to aggravate damage due to transient ischemia, it is a matter of controversy whether or not this is a result of the exaggerated acidosis. It has recently been reported that although tissue acidosis of a comparable severity could be induced in normoglycemic dogs by an excessive rise in arterial CO2 tension, short-term functional recovery was improved, rather than compromised. In the present experiments we induced excessive hypercapnia (Paco2, ∼300 mm Hg) in normoglycemic rats before inducing forebrain ischemia of 10-min duration. This reduced the brain extracellular pH to values normally encountered in hyperglycemic rats subjected to ischemia. The events induced by hypercapnia clearly enhanced ischemic brain damage, as assessed histologically after 7 days of recovery. We hypothesize that the decisive event was an exaggerated decrease in extra- and intracellular pH and that the results thus demonstrate an adverse effect of acidosis. However, since postischemic seizures did not occur in the hypercapnic ischemic rats, the results also demonstrate that changes in intra-extracellular pH and bicarbonate concentrations modulated ischemic damage in an unexpected way.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3