Immunocytochemical Study of an Early Microglial Activation in Ischemia

Author:

Gehrmann Jochen,Bonnekoh Petra1,Miyazawa Takahito1,Hossmann Konstantin-Alexander1,Kreutzberg Georg W.

Affiliation:

1. Department of Experimental Neurology, Max Planck Institute for Neurological Research, Köln, Germany

Abstract

Transient arrest of the cerebral blood circulation results in neuronal cell death in selectively vulnerable regions of the rat brain. To elucidate further the involvement of glial cells in this pathology, we have studied the temporal and spatial distribution pattern of activated microglial cells in several regions of the ischemic rat brain. Transient global ischemia was produced in rats by 30 min of a four-vessel occlusion. Survival times were 1, 3, and 7 days after the ischemic injury. The microglial reaction was studied immunocytochemically using several monoclonal antibodies, e.g., against CR3 complement receptor and major histocompatibility complex (MHC) antigens. Two recently produced monoclonal antibodies against rat microglial cells, designated MUC 101 and 102, were also used to identify microglial cells. Following ischemia, the microglial reaction was correlated with the development of neuronal damage. The earliest presence of activated microglial cells was observed in the dorsolateral striatum, the CA1 area, and the dentate hilus of the dorsal hippocampus. However, the microglial reaction was not confined to areas showing selective neuronal damage, but also occurred in regions that are rather resistant to ischemia, such as the CA3 area. Particularly in the frontoparietal cortex, the appearance of MHC class II–positive microglial cells provided an early indication of the subsequent distribution pattern of neuronal damage. The microglial reaction would thus seem to be an early, sensitive, and reliable marker for the occurrence of neuronal damage in ischemia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 277 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3