Increased Blood—Brain Barrier Transport of Protein-Bound Anticonvulsant Drugs in the Newborn

Author:

Cornford Eain M.12,Pardridge William M.3,Braun Leon D.4,Oldendorf William H.42

Affiliation:

1. Southwestern Regional VA Epilepsy Center, Veterans Administration Wadsworth Medical Center, Los Angeles, California, U.S.A.

2. Department of Neurology, Reed Neurological Research Center, UCLA School of Medicine, Los Angeles, California, U.S.A.

3. Division of Endocrinology, Department of Medicine, UCLA School of Medicine, Los Angeles, California, U.S.A.

4. Research Service, Veterans Administration Brentwood Medical Center, Los Angeles, California, U.S.A.

Abstract

The extraction of heroin, caffeine, diphenylhydantoin, and phenobarbital has been measured in the newborn, suckling, and adult brain. Anticonvulsant drugs such as diphenylhydantoin and phenobarbital are bound by plasma protein, and it is generally believed that only the fraction of drug that is free (dialyzable) in vitro is available for transport through the blood-brain barrier in vivo. In both the adult and neonatal rat or rabbit, lipid-mediated transport of free phenytoin occurs. In addition, a fraction of the drug that enters the capillary bound to plasma protein also gains access to the brain. A greater amount of protein-bound drug permeates the newborn brain, and this is ascribed to a longer capillary transit time in the neonate. With regard to phenobarbital, the total (i.e., both free and protein-bound) plasma drug enters the newborn brain. In contrast, no protein-bound phenobarbital permeates the adult brain, and it is only the free drug fraction that gains access to the brain. Since the blood—brain barrier permeability—surface area product for the two anticonvulsants is unchanged in newborn and older animals, the age-related differences in brain uptake of protein-bound drugs can be attributed to developmental changes in cerebral blood flow and capillary transit time. The increased transport of protein-bound drugs in the newborn may cause increased concentrations (i.e., brain:plasma ratios) of these anticonvulsants in the neonatal brain.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3