Error Sensitivity of Fluorodeoxyglucose Method for Measurement of Cerebral Metabolic Rate of Glucose

Author:

Huang Sung-Cheng1,Phelps Michael E.1,Hoffman Edward J.1,Kuhl David E.1

Affiliation:

1. Divisions of Biophysics and Nuclear Medicine, Department of Radiological Sciences, UCLA School of Medicine, and Laboratory of Nuclear Medicine, University of California, Los Angeles, Los Angeles, California

Abstract

The fluorodeoxyglucose (FDG) method for the measurement of local cerebral metabolic rate of glucose (LCMRGlc) employs typical values of the FDG transport rate constants that have been obtained by kinetic measurements on an appropriate control group. Discrepancies between the true values of the rate constants in tissue and the typical values used in the operational equation of the FDG method will introduce error in the estimate of LCMRGlc. Computer simulations were used to evaluate the accuracy of the FDG method in cases where (1) the tissue LCMRGlc deviates greatly from the normal values (e.g., stroke) or (2) the tissue LCMRGlc changes during the experiment (e.g., epileptic seizure). The effects of the magnitude and duration of metabolic changes were studied. The rsults indicate that if tissue LCMRGlc differs greatly from the normal value, the error in the estimated LCMRGlc at a scan time of 60 min is less than 20% of the difference between the true and normal values. In the non-steady-state cases, the estimated LCMRGlc was found to be a weighted average of the metabolic rates during the experiments, with the weightings approximately proportional to the plasma FDG concentration at the corresponding times. For example, if LCMRGlc in tissue was 5 times the normal values for the first 10 min but then returned to normal state, the LCMRGlc measured by the FDG method at a scan time of 60 min would be about only 2–3 times the normal value. The results of this study provide a better understanding of the accuracy of the FDG method under various tissue metabolic conditions and is useful for interpreting metabolic values obtained with the FDG method.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3