Effect of Transient Cerebral Ischemia on Metabolic Activation of a Somatosensory Circuit

Author:

Dietrich W. Dalton1,Ginsberg Myron D.1,Busto Raul1

Affiliation:

1. Cerebral Vascular Disease Research Center, Departments of Neurology and Anatomy and Cell Biology, University of Miami School of Medicine, Miami, Florida, U.S.A.

Abstract

The effects of transient ischemia on the metabolic responsiveness of a well-defined brain circuit were investigated with [14C]2-deoxyglucose autoradiography. Rats underwent 30 min of severe forebrain ischemia followed by postischemic recirculation periods of 1, 2, 3, 5, and 10 days. At these times, unilateral whisker stimulation was carried out, resulting in the metabolic activation of the whisker barrel circuit. An altered pattern of glucose utilization within both stimulated and nonstimulated circuit relay stations was observed at 1, 2, and 3 days following ischemia. At 1 day, stimulus-evoked increases in metabolic activity were severely depressed within both the ventrobasal thalamus and layer IV of the cortical barrel field region. Baseline metabolic rate within nonstimulated relay areas was also severely depressed at this time. At postischemic days 2 and 3, moderate levels of increased glucose utilization were apparent overlying cortical layer IV and the superficial half of layer VI, while layers I, II, III, and V appeared less responsive to metabolic activation. By day 5, whisker stimulation resulted in normal levels of increased glucose utilization within the activated ventrobasal thalamus and layer IV of the cortical barrel field region. Glucose utilization within nonactivated relay stations, depressed at earlier time periods, had also returned to control levels by day 5. At both 5 and 10 days, an altered laminar pattern of elevated glucose utilization was apparent within the activated barrel field region, with local CMRglubeing depressed in layer V compared with control values. These results demonstrate that periods of transient ischemia produce both reversible and longer-lasting effects on the ability of the CNS to respond to peripheral activation. Functional restitution occurs slowly over a period of days following ischemia and appears to be related to the postischemic baseline level of metabolic rate. Finally, the abnormal laminar pattern of cortical activation apparent at postischemic day 10 may suggest dysfunction of intracortical circuits, a result that might be expected to alter the processing of sensory information.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3