Quantification of Human Opiate Receptor Concentration and Affinity Using High and Low Specific Activity [11C]Diprenorphine and Positron Emission Tomography

Author:

Sadzot Bernard,Price Julie C.,Mayberg Helen S.,Douglass Kenneth H.,Dannals Robert F.,Lever John R.,Ravert Hayden T.,Wilson Alan A.,Wagner Henry N.,Feldman Marc A.1,Frost J. James

Affiliation:

1. Department of Anesthesiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A.

Abstract

[11C]Diprenorphine, a weak partial opiate agonist, and positron emission tomography were used to obtain noninvasive regional estimates of opiate receptor concentration ( Bmax) and affinity ( Kd) in human brain. Different compartmental models and fitting strategies were compared statistically to establish the most reliable method of parameter estimation. Paired studies were performed in six normal subjects using high (769–5,920 Ci/mmol) and low (27–80 Ci/mmol) specific activity (SA) [11C]diprenorphine. Two subjects were studied a third time using high SA [11C]diprenorphine after a pretreatment with 1–1.5 mg/kg of the opiate antagonist naloxone. After the plasma radioactivity was corrected for metabolites, the brain data were analyzed using a three-compartment model and nonlinear least-squares curve fitting. Linear differential equations were used to describe the high SA (low receptor occupancy) kinetics. The k3/ k4 ratio varied from 1.0 ± 0.2 (occipital cortex) to 8.6 ± 1.6 (thalamus). Nonlinear differential equations were used to describe the low SA (high receptor occupancy) kinetics and the curve fits provided the kon f2 product. The measured free fraction of [11C]diprenorphine in plasma ( f1) was 0.30 ± 0.03, the average K1/ k2 ratio from the two naloxone studies was 1.1 ± 0.2, and the calculated free fraction of [11C]diprenorphine in the brain ( f2) was 0.3. Using the paired SA studies, the estimated kinetic parameters, and f2, separate estimates of Bmax and Kd were obtained. Bmax varied from 2.3 ± 0.5 (occipital cortex) to 20.6 ± 7.3 (cingulate cortex) n M. The average Kd (eight brain regions) was 0.85 ± 0.17 n M.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3