Effects of Human Aging on Patterns of Local Cerebral Glucose Utilization Determined by the [18F] Fluorodeoxyglucose Method

Author:

Kuhl David E.1,Metter E. Jeffrey1,Riege Walter H.1,Phelps Michael E.1

Affiliation:

1. Laboratory of Nuclear Medicine and the Divisions of Nuclear Medicine and Biophysics of the Department of Radiological Sciences and the Department of Neurology. UCLA School of Medicine, Los Angeles, California

Abstract

The [18F]fluorodeoxyglucose (FDG) scan method with positron emission computed tomography was used to determine patterns of local cerebral glucose utilization (LCMRglu) in 40 normal volunteer subjects aged 18 to 78 years. Throughout all the studies, each subject was quiet, without movement, with eyes open and ears unplugged, exposed only to ambient room light and sound. For the entire group, whole brain mean CMRglu was 26.1 ± 6.1 μmol 100 g−1 min−1 (mean ± SD, n = 40). At age 78, mean CMR glu was, on the average, 26% less than at age 18, an alteration of the same order as the variance among subjects at any age. The gradual decline of mean CMRglu with advancing age occurred at a faster rate than was reported for mean cerebral oxygen utilization, possibly due to increasingly altered pathways for glucose utilization, or to increasing oxidation of ketone bodies or other alternative substrates. Glucose utilization in the hemispheres was symmetrical and mean CMRglu of overall cortex, caudate, and thalamus was equal in individuals at all ages. The slopes of decline with age were similar when LCMRglu was averaged over zones corresponding to centrum semiovale, caudate, putamen, and frontal, temporal, parietal, occipital, and primary visual cortex. However, the metabolic ratio of superior frontal cortex to superior parietal cortex declined with age, possibly due to selective degeneration of superior frontal cortex or to differences between age groups in the sensory and cognitive response to the study. These results should be useful in distinguishing age from disease effects when the FDG scan method is used.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3