MRI-PET Correlation in Three Dimensions Using a Volume-of-Interest (VOI) Atlas

Author:

Evans A. C.1,Marrett S.1,Torrescorzo J.1,Ku S.1,Collins L.1

Affiliation:

1. NeuroImaging Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

Abstract

Quantitative interpretation of functional images (PET or SPECT) is hampered by poor spatial resolution, low counting statistics, and, for many tracers, low contrast between different brain structures of interest. Furthermore, normal tracer distributions can be severely disrupted by such gross pathologies as stroke, tumor, and dementia. Hence, the complementary anatomical information provided by CT or MRI is essential for accurate and reproducible regional analysis of functional data. We have developed methods for the simultaneous three-dimensional display and analysis of image volumes from MRI and PET. A general algorithm for defining the affine transformation between two equivalent point ensembles has been adapted for the purpose of registering MRI and PET image volumes by means of a simple fiducial arrangement. In addition, we have extended previous MRI-based computerized atlas methodology to three dimensions. The native atlas planes were spaced at 2 mm intervals, sufficient axial sampling to permit the generation of oblique planar sections through the atlas space. This will allow for an infinite number of angulations and axial offsets in two-dimensional region-of-interest (ROI) templates, all derived from the same master three-dimensional volume-of-interest (VOI) atlas and therefore maintaining topographical consistency throughout. These ROI templates may be selected to match the image orientation for conventional two-dimensional segmentation and data extraction.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3