Transient Spinal Ischemia in Rat: Characterization of Spinal Cord Blood Flow, Extracellular Amino Acid Release, and Concurrent Histopathological Damage

Author:

Marsala Martin,Sorkin Linda S.1,Yaksh Tony L.1

Affiliation:

1. Department of Anesthesiology, University of California, San Diego, La Jolla, California, U.S.A.

Abstract

Extracellular concentrations of amino acids in halothane-anesthetized rats were measured using a microdialysis fiber inserted transversely through the dorsal spinal cord at the level of the lumbar enlargement in conjunction with HPLC and ultraviolet detection. After a 2-h washout and a 1-h control period, 20 min of reversible spinal cord ischemia was achieved by the inflation of a Fogarty F2 catheter passed through the femoral artery to the descending thoracic aorta. After 2 h of postischemic reperfusion, animals were transcardially perfused with saline followed by 10% formalin or 4% paraformaldehyde. The glutamate concentration in the dialysate was significantly elevated after 10 min of occlusion and returned to near-baseline during the first 30 min of reperfusion. Taurine was elevated significantly 0.5 h postocclusion and continued to increase throughout the 2 h of reperfusion. Glycine concentrations showed a tendency to be slightly above baseline during the reperfusion period. Glutamine concentrations modestly increased following 2 h of reperfusion. No significant changes in aspartate, asparagine, and serine were detected. In control animals no significant changes in any amino acids were detected. To assess the role of complete spinal ischemia on spinal glutamate release, studies were carried out using cardiac arrest. Twenty minutes after induction of cardiac arrest, the glutamate concentration was increased about 350–400%. In a separate group of animals, spinal cord blood flow (SCBF) and its response to decreased CO2 were measured using a laser probe implanted into the epidural space at the level of the L2 vertebral segment. SCBF decreased to 5–6% of the control during aortic occlusion. After reversible ischemia, marked hyperemia was seen for the first 15 min, followed by hypoperfusion at 60 min. Under control–preischemic conditions a decrease in arterial CO2 content caused a decrease in SCBF of about 25%. This autoregulatory response was almost completely absent when assessed 60 min after a 20-min interval of aortic occlusion. Histopathological analysis of spinal cord tissue from these animals demonstrated heavy neuronal argyrophilia affecting small and medium-sized neurons located predominantly in laminae III–V. These changes corresponded to signs of irreversible damage at the ultrastructural level. Occasionally, small areas of focal necrosis, located in the dorsolateral part of the dorsal horn and anterolateral part of the ventral horn, were found. The results are consistent with a role for glutamate in ischemically induced spinal cord damage and suggest that taurine elevation detected during the early reperfusion period may serve as an important indicator of irreversible spinal cord neuronal damage.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3