Improved Detection of Focal Cerebral Blood Flow Changes Using Three-Dimensional Positron Emission Tomography

Author:

Cherry Simon R.12,Woods Roger P.23,Hoffman Edward J.2,Mazziotta John C.23

Affiliation:

1. The Crump Institute for Biological Imaging, Laboratory of Nuclear Medicine, UCLA School of Medicine, Los Angeles, California, U.S.A.

2. Division of Nuclear Medicine & Biophysics, Laboratory of Nuclear Medicine, UCLA School of Medicine, Los Angeles, California, U.S.A.

3. Department of Neurology, Laboratory of Nuclear Medicine, UCLA School of Medicine, Los Angeles, California, U.S.A.

Abstract

Removal of the interplane septa and configuration of a typical multislice PET scanner to accept all possible coincidence lines of response leads to a fivefold increase in sensitivity. This can be of value in regional CBF studies using bolus 15O-labeled water injections, allowing the injected dose to be reduced by a factor of 4, while maintaining the same number of noise equivalent counts. Thus, for a given cumulative dose limit, four times as many studies can be performed in a single subject. Data from the three-dimensional Hoffman brain phantom, closely matched to count rates seen in human studies, show that for an identical cumulative dose, the noise in subtraction (stimulus minus baseline) images can be reduced by a factor of 2 using three-dimensional data acquisition, with appropriate fractionation of the dose. This improvement is dependent on axial position due to the sensitivity characteristics of three-dimensional scans; however, there is a significant gain in the signal-to-noise ratio (S/N) in all image planes. Studies performed in a human subject demonstrate how the factor of 2 gain in S/N leads to improved detectability of activation sites in PET subtraction images.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3