Effect of Nitric Oxide Blockade by NG-Nitro-l-Arginine on Cerebral Blood Flow Response to Changes in Carbon Dioxide Tension

Author:

Wang Qiong,Paulson Olaf B.1,Lassen Niels A.

Affiliation:

1. Department of Neurology, Rigshospital, Copenhagen, Denmark

Abstract

The importance of nitric oxide (NO) for CBF variations associated with arterial carbon dioxide changes was investigated in halothane-anesthetized rats by using an inhibitor of nitric oxide synthase, NG-nitro-l-arginine (NOLAG). CBF was measured by intracarotid injection of 133Xe. In normocapnia, intracarotid infusion of 1.5, or 7.5, or 30 mg/kg NOLAG induced a dose-dependent increase of arterial blood pressure and a decrease of normocapnic CBF from 85 ± 10 to 78 ± 6, 64 ± 5, and 52 ± 5 ml 100g−1 min−1, respectively. This effect lasted for at least 2 h. Raising Paco2 from a control level of 40 to 68 mm Hg increased CBF to 230 ± 27 ml 100g−1 min−1, corresponding to a percentage CBF response (CO2 reactivity) of 3.7 ± 0.6%/mm Hg Paco2 in saline-treated rats. NOLAG attenuated this reactivity by 32, 49, and 51% at the three-dose levels. Hypercapnia combined with angiotensin to raise blood pressure to the same level as the highest dose of NOLAG did not affect the CBF response to hypercapnia. l-Arginine significantly prevented the effect of NOLAG on normocapnic CBF as well as blood pressure and also abolished its inhibitory effect on hypercapnic CBF. d-Arginine had no such effect. Decreasing Paco2 to 20 mm Hg reduced control CBF to 46 ± 3 ml 100g−1 min−1 with no further reduction after NOLAG. Furthermore, NOLAG did not change the percentage CBF response to an extracellular acidosis induced by acetazolamide (50 mg/kg). The results suggest that NO or a closely related compound is involved in the regulation of CBF in normocapnia and even more so in hypercapnia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3