Blood—Brain Barrier Taurine Transport during Osmotic Stress and in Focal Cerebral Ischemia

Author:

Stummer Walter1,Betz A. Lorris123,Shakui Parvin1,Keep Richard F.1

Affiliation:

1. Departments of Surgery, University of Michigan, Ann Arbor, Michigan, U.S.A.

2. Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan, U.S.A.

3. Departments of Neurology, University of Michigan, Ann Arbor, Michigan, U.S.A.

Abstract

Little is known about blood to brain taurine transport despite substantial evidence suggesting a role of taurine in brain volume regulation during osmotic stress or conditions inducing cell swelling, such as ischemia. We have made measurements of the taurine influx rate constant ( K1) with [3H]taurine in three conditions: raised plasma taurine concentrations induced by infusion with 50 m M taurine (10 μl/100 g/min); osmotic stress induced by i.p. injections of 1.5 M NaCl (2 ml/100 g) or distilled water (10 ml/100 g); and 4 h of middle cerebral artery occlusion (MCAo). In rats with MCAo, additional determinations were made of tissue water and taurine contents, and blood-brain barrier passive permeability with [3H]α-aminoisobutyric acid. Taurine infusion increased plasma taurine from 110 ± 63 μ M (SD) to 407 ± 63 (p < 0.001) and decreased taurine K1 at the blood–brain barrier by 70% (p < 0.001), signifying saturable uptake that maintained unidirectional influx constant. Similarly, although hypo- and hyperosmolality increased and decreased plasma taurine concentration, respectively, a reciprocal relationship between K1 and plasma taurine in these experiments ensured that unidirectional fluxes of taurine into' brain were unchanged by osmotic stress. During MCAo, the taurine K1 was reduced 80% in the ipsilateral ischemic tissue compared with the contralateral nonischemic tissue (p < 0.001). This decline may be due to a release of taurine into the brain circulation, because there was a concomitant loss of tissue taurine of 7.4 ± 2.4 mmol/g dry weight (p < 0.05). Alternately, if taurine uptake is sodium dependent, the decline might reflect a disruption of the endothelial sodium gradient.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3