Affiliation:
1. Department of Statistics, Harvard University, Cambridge, Massachusetts, U.S.A.
Abstract
The limits of quantitation with positron emission tomography (PET) are examined with respect to the noise propagation resulting from radioactive decay and other sources of random error. Theoretical methods for evaluating the statistical error have been devised but seldom applied to experimental data obtained on human subjects. This paper extends the analysis in several ways: (1) A Monte Carlo method is described for tracking the propagation of statistical error through the analysis of in vivo measurements; (2) Experimental data, obtained in phantoms, validating the Monte Carlo method and other methods are presented; (3) A difference in activation paradigm, performed on regional CBF (rCBF) data from five human subjects, was analyzed on 1.6-cm diameter regions of interest to determine the mean fractional statistical error in PET tissue concentration and in rCBF before and after stereotactic transformation; and (4) A linear statistical model and calculations of the various statistical errors were used to estimate the magnitude of the subject-specific fluctuations under various conditions. In this specific example, the root mean squared (RMS) noise in flow measurements was about three times higher than the RMS noise in the concentration measurements. In addition, the total random error was almost equally partitioned between statistical error and random fluctuations due to all other sources.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献