Effects of Lactacidosis on Glial Cell Volume and Viability

Author:

Staub F.1,Baethmann A.1,Peters J.1,Weigt H.1,Kempski O.1

Affiliation:

1. Institute for Surgical Research, Ludwig Maximilians University, Munich, F.R.G.

Abstract

Effects of severe lactacidosis were analyzed in vitro by employment of C6 glioma cells and astrocytes from primary culture. The cells were suspended in a physiological medium, which was rendered acidotic by addition of lactic acid in rising concentrations. A pH range of 7.4–4.2 was studied under maintenance of isotonicity and a normal electrolyte concentration of the medium. Cell swelling was quantified by flow cytometry using an advanced Coulter system with hydrodynamic focusing. The method was also utilized for assessment of cell viability by exclusion of the fluorescent dye propidium iodide. The volume of C6 glioma cells was found to increase if the pH was titrated to pH 6.8 or below. From this level downward, the extent of cell swelling depended on the degree of acidosis and the duration of exposure. For example, lactacidosis of pH 6.2 for 60 min led to an increase in cell size to 124.5% of normal, while pH 5.0 or 4.2 led to a cell size of 151.1 or 190.9%, respectively. A comparative analysis of the acidosis-induced cell swelling was made by using sulfuric acid. Swelling of C6 glioma at a given pH was only half of what was found when using lactic acid. This indicates specific swelling-inducing properties of lactic acid, while cell viability was not differently affected by both acids. Of the C6 glioma cells, 89.1% were viable under control conditions at pH 7.4. The viability remained unchanged down to pH 6.2. At pH 5.6, viability remained normal for 30 min, but it decreased to 73.4% after 60 min. Further lowering of pH to 5.0 or 4.6 respectively, decreased the number of viable cells to 47.8 or 40.3%. At pH 4.2 only 21.1% of the cells were surviving 1 h of lactacidosis. Cell swelling from lactacidosis could be largely inhibited by replacement of Na+ and bicarbonate ions in the medium by choline chloride and N-2-hydroxyethylpiperazine- N'-2-ethanesulfonic acid buffer, suggesting an involvement of the Na+/H+ and Cl/HCO3 antiporters in the swelling process. Omission of Na+ and bicarbonate was, however, associated with reduced viability of the glial cells in acidosis. The swelling response of astrocytes obtained from primary culture was similar to that of C6 glioma. Lactic acid was also more effective in inducing cell swelling than sulfuric acid at the same level of acidosis. In astrocytes, viability at, e.g., pH 5.6 appeared to be more affected by lactic than by sulfuric acid. Taken together, the current results demonstrate different thresholds of acidosis, which are associated with either cell swelling or cell death. Cell swelling was induced from pH 6.8 downward, whereas cell viability started to decline at pH 5.6. Since increasing levels of acidosis were associated with an increasing degree of glial swelling, which resulted, at least in part, from an exchange of intracellular H+ ions against extracellular Na+ ions, the swelling response may be interpreted as a protective mechanism, which was activated to maintain or reestablish a normal intracellular pH, thereby mitigating cell damage from acidosis.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3