The Two Patterns of Reactive Astrocytosis in Postischemic Rat Brain

Author:

Petito Carol K.,Morgello Susan,Felix Juan C.,Lesser Martin L.1

Affiliation:

1. Department of Public Health, Cornell University Medical College and the Division of Biostatistics, North Shore University Hospital, Manhasset, New York, U.S.A.

Abstract

The distribution and time course of postischemic astrocyte hypertrophy and hyperplasia and the relationship to neuronal viability or necrosis was studied in rats subjected to 30 min of carotid and vertebral artery occlusion followed by reperfusion from 3 h to 5 weeks. Intermediate filaments (IFs) were evaluated by electron microscopy, IF proteins by immunohistochemistry, and astrocyte division by [3H]thymidine uptake. Glial fibrillary acidic protein (GFAP) increased in damaged and nondamaged brain regions by 2 days and was associated with cell enlargement, increases in IF, and transformation of GFAP-negative into GFAP-positive glia. Cell hypertrophy and increased GFAP persisted only in regions of neuronal necrosis whereas the number and size of GFAP-positive astrocytes returned to control levels in nondamaged regions by 2 weeks. Astrocyte hyperplasia was not seen until 3 days and was confined to damaged brain regions. Vimentin-positive astrocytes were numerous by 2 days in damaged brain and remained only in those regions at 5 weeks. The data demonstrate that reactive astrocytosis develops in undamaged brain, but is reversible with prolonged survival, whereas reactive astrocytosis that accompanies structural brain damage persists for prolonged periods and is associated with hyperplasia, as well as hypertrophy. In addition, the results show that astrocyte expression of vimentin is more specific than GFAP in identifying regions of permanent ischemic injury during the early postischemic period.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3