Affiliation:
1. Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, U.S.A.
Abstract
The exceptional ability of the turtle brain to survive prolonged anoxia makes it a unique model for studying anoxic survival mechanisms. We have used epiillumination microscopy to record blood flow rate in venules on the cortical surface of turtles ( Trachemys scripta). During anoxia, blood flow rate increased 1.7 times after 45–75 min, whereupon it fell back, reaching preanoxic values after 115 min of anoxia. Topical super-fusion with adenosine (50 μ M) during normoxia caused a 3.8-fold increase in flow rate. Superfusing the brain with the adenosine receptor blocker aminophylline (250 μ M) totally inhibited the effects of both adenosine and anoxia, while aminophylline had no effect on normoxic flow rate. None of the treatments affected systemic blood pressure. These results indicate an initial adenosine-mediated increase in cerebral blood flow rate during anoxia, probably representing an emergency response before deep metabolic depression sets in.
Subject
Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献