Focal and Perifocal Changes in Tissue Energy State during Middle Cerebral Artery Occlusion in Normo- and Hyperglycemic Rats

Author:

Folbergrová Jaroslava,Memezawa Hajime1,Smith Maj-Lis2,Siesjö Bo K.2

Affiliation:

1. Second Department of Internal Medicine, Nippon Medical School, Tokyo, Japan

2. Laboratory for Experimental Brain Research, University of Lund, Lund, Sweden

Abstract

The objective of the present study was to assess changes in cellular energy metabolism in focal and perifocal areas of a stroke lesion and to explore how these changes are modulated by preischemic hyperglycemia. A model for reversible occlusion of the middle cerebral artery (MCA) in rats was used to study changes in energy metabolism. Following MCA occlusion for 5, 15, or 30 min in normoglycemic rats, the tissue was frozen in situ, and samples from the lateral caudoputamen and from two neocortical areas were collected for metabolite analyses, together with a control sample from the contralateral, nonischemic hemisphere. Two other groups, subjected to 30 min of MCA occlusion, were made hyperglycemic by acute glucose infusion or by prior injection of streptozotocin. Enzymatic techniques were used for measurements of phosphocreatine, creatine, ATP, ADP, AMP, glycogen, glucose, pyruvate, and lactate. The neocortex of the contralateral, nonischemic hemisphere had labile metabolites that were similar to those measured in control animals. Ipsilateral neocortex bordering the focus, and thus constituting the “penumbra,” showed mild to moderate ischemic changes. In the “focus” (lateral caudoputamen plus the overlying neocortex), deterioration of energy state was rapid and relatively extensive (ATP content 20–40% of control). After 5 min of occlusion, no further deterioration of metabolic parameters was observed. Substrate levels were markedly reduced, and lactate content rose to ∼10 mM kg−1. In the animals with the most severe energy depletion, no additional accumulation of lactate occurred, suggesting substrate depletion. This was confirmed by the results obtained in the hyperglycemic subjects whose tissue lactate contents rose to ∼20 m M kg−1. However, the energy state of the focus was better preserved in both hyperglycemic groups as compared with the normoglycemic group. It has been shown, in this model, that relatively brief occlusion periods are required to induce infarction. The present results demonstrate that this can occur in spite of the absence of pronounced depletion of energy reserves. After 30 min of MCA occlusion, infarction developed in the lateral caudoputamen, but not in the neocortex. Since a similar perturbation in metabolic state was demonstrated here, other factors must contribute to the degree of tissue damage. The present results suggest that damage is exaggerated by hyperglycemia because it allows additional lactate to accumulate in the partially substrate-depleted tissue.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3