Use of 2-Deoxy-D[1-11C]Glucose for the Determination of Local Cerebral Glucose Metabolism in Humans: Variation within and between Subjects

Author:

Reivich M.12,Alavi A.12,Wolf A.3,Greenberg J. H.1,Fowler J.3,Christman D.3,MacGregor R.3,Jones S. C.1,London J.2,Shiue C.3,Yonekura Y.3

Affiliation:

1. Cerebrovascular Research Center of the Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania

2. Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

3. Brookhaven National Laboratories, Upton, New York

Abstract

The deoxyglucose technique for the measurement of local cerebral glucose metabolism (LCMRgl) has been widely applied in animals utilizing 14C-deoxyglucose and in humans employing 18F-fluorodeoxyglucose. Repeat studies in humans over a relatively brief period of time have not been possible because of the 110-min half-life of fluorine-18. With the synthesis of 11C-deoxyglucose it has now become possible to utilize this short-lived (20 min) tracer for the measurement of LCMRgl and to determine its variability within subjects over a 2-h period. The kinetic rate constants for 11C-deoxyglucose were determined for gray and white matter and found to be very similar to those for 18F-fluorodeoxyglucose, suggesting that these two analogues of glucose have similar affinities for the facilitated transport system and are similar substrates for hexokinase in the brain. The coefficient of variation of repeated measurements of LCMRgl in a series of six normal subjects was 5.5% to 8.7% for various gray matter structures and 9.7% to 14.0% for white matter structures. The pattern of cerebral metabolic rates is relatively constant in a given individual when the conditions of the study are unchanged. The ability to make repeat measurements in the same subject reduces the variance due to between-subject differences, allowing smaller changes in LCMRgl to be detected with confidence.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3