A Simple Method for Evaluation of Superoxide Radical Production in Neural Cells under Various Culture Conditions: Application to Hypoxia

Author:

Daval Jean-Luc,Ghersi-Egea Jean-François1,Oillet Jean,Koziel Violette

Affiliation:

1. INSERM U.325, Lille, France

Abstract

To evaluate the potential deleterious influence of oxygen-derived free radicals following hypoxia in a model of primary culture of neurons obtained from the fetal rat brain, superoxide radicals were measured as a function of time in the extracellular medium. Neuronal cells were grown for 8 days in the presence or absence of serum, then incubated in a buffered Krebs–Ringer solution containing 60 μ M acetyl-cytochrome c. The rate of superoxide radical formation was quantified spectrophotometrically by measuring the specific reduction of acetyl-cytochrome c. Under normoxic conditions (95% air-5% CO2), basal production of superoxide that increased with time was recorded. It was significantly more pronounced in cells grown in serum-free medium. Under both culture conditions, acute hypoxia (95% N2–5% CO2) for 6 h increased superoxide radical amounts in the extracellular medium, and they were still enhanced 3 h after reoxygenation. The addition of superoxide dismutase to the incubating medium abolished the detection of superoxide radicals. The present study describes a new reliable method for superoxide radical measurement in cells in vitro and demonstrates hypoxia/reoxygenation-induced overproduction of superoxide in cultured neurons that may account for cell injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3