Tracer 2-Deoxyglucose Kinetics in Brain Regions of Rats Given Kainic Acid

Author:

Cremer Jill E.1,Seville Malcom P.1,Cunningham Vincent J.1

Affiliation:

1. MRC Toxicology Unit, Medical Research Council Laboratories, Carshalton, Surrey, U.K.

Abstract

The initial distribution of tracer amounts of 2-deoxyglucose between plasma and brain tissue, relative to native glucose, and the rate of accumulation of 2-deoxyglucose-6-phosphate were determined in brain regions of rats given kainic acid intravenously. Regional plasma flow was measured in a comparable group of animals. A previously described compartmental model was used to obtain estimates of rates of glucose transport and of glucose phosphorylation. Both rates were significantly increased in entorhinal cortex, hippocampus, amygdala, and septal nucleus. From measured brain tissue and plasma glucose concentrations, glucose fluxes were also calculated in terms of either irreversible or reversible Michaelis-Menten kinetics. In all brain regions of control rats and in six of the ten regions studied in rats given kainic acid, rates of glucose transport calculated in terms of the Michaelis-Menten models were consistent with those estimated by the tracer 2-deoxyglucose procedure. However, in the four regions in which glucose metabolism was stimulated, rates of glucose transport calculated from the behaviour of tracer 2-deoxyglucose were considerably higher than rates calculated from measured concentrations of glucose in plasma and brain tissue using Michaelis-Menten models. The possibility is considered that in those regions that are metabolically stimulated by kainate, there is an increasing asymmetry between the luminal and abluminal membranes of the capillary endothelium in the permeability to glucose and its analogs. An alternative proposal is that in the model used to analyse the tracer 2-deoxyglucose data, the assumption of a rapid mixing of tracer throughout the endogenous pool of tissue glucose prior to phosphorylation becomes invalid. The discrepancies between tracer and native glucose in these particular regions of rats given kainate are consistent with an apparent metabolic compartmentation. The influence of kainate on plasma flow was found to differ regionally, with flow in entorhinal cortex, hippocampus, and amygdala being unchanged. There is some evidence for increased rates of glycolysis relative to oxidative metabolism in these regions.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3