Simultaneous Determination of Local Cerebral Glucose Utilization and Blood Flow by Carbon-14 Double-Label Autoradiography: Method of Procedure and Validation Studies in the Rat

Author:

Ginsberg Myron D.1,Smith David W.1,Wachtel Mitchell S.1,Gonzalez-Carvajal Mayra1,Busto Raul1

Affiliation:

1. Cerebral Vascular Disease Research Center and Department of Neurology, University of Miami School of Medicine, Miami, Florida, U.S.A.

Abstract

Validation studies were undertaken to establish a computer-assisted double-label autoradiographic strategy employing [14C]2-deoxyglucose ([14C]2DG) and [14C]iodoantipyrine ([14C]IAP) to measure local CMRglu (LCMRglu) and CBF (LCBF). An organic solvent was used to extract the majority of IAP between first and second film exposures. In contrast to previously published data, all solvents tested produced partial losses of 2DG from tissue, and all allowed 2–6% of IAP to persist even after 5-day washes. Technical-grade chloroform permitted equal retention of unmetabolized and metabolized 2DG. A linear model was established, which was insensitive to the changes in tissue self-absorption that were shown to occur with chloroform extraction. Propagated error in computing tissue [14C]2DG and [14C]IAP was reduced by maximizing IAP extraction (by longer solvent wash times) and by administering 2.5 times as much IAP as 2DG. Fractional 2DG retention was measured in single-label 2DG sections placed on the films, and fractional IAP retention was evaluated by an optimization procedure. With this strategy, double-label values for LCMRglu and LCBF in anesthetized rats agreed with values obtained in matched single-label series to within 5%. The coefficients of variation for the double- and single-label LCMRglu data were virtually identical, whereas the coefficient of variation for double-label LCBF was 1.8 times that of single-label LCBF. The double-label strategy permitted pixel-by-pixel measurement and video display of the LCMRglu/LCBF ratio; the mean value among structures was 0.472 μmol/ml. With proper attention to methodological detail, this double-label strategy shows great promise for routine laboratory application.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3