Cerebrovascular Responses under Controlled and Monitored Physiological Conditions in the Anesthetized Mouse

Author:

Dalkara T.1,Irikura K.1,Huang Z.1,Panahian N.1,Moskowitz M. A.1

Affiliation:

1. Stroke Research Laboratory, Departments of Neurosurgery and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A.

Abstract

Control of physiological parameters such as respiration, blood pressure, and arterial blood gases has been difficult in the mouse due to the lack of technology required to monitor these parameters in small animals. Here we report that anesthetized and artificially ventilated mice can be maintained under physiological control for several hours with apparently normal cerebrovascular reactivity to hypercapnia and mechanical vibrissal stimulation. SV-129 mice were anesthetized with urethane (750 mg/kg i.p.) and α-chloralose (50 mg/kg i.p.), intubated, paralyzed, and artificially ventilated. Respiratory control was maintained within physiological range by reducing the inspiratory phase of the respiratory cycle to <0.1 s and by adjusting end-tidal CO2 to give a Pco2 of 35 ± 3 mm Hg. In these mice, mean arterial pressure (95 ± 9 mm Hg), heart rate (545 ± 78 beats/min), and arterial pH (7.27 ± 0.10) could be maintained for several hours. Body temperature was kept at 36.5–37.5°C. We observed stable regional CBF (rCBF) measurements (as determined by laser–Doppler flowmetry) when systemic arterial blood pressure was varied between 40 and 130 mm Hg. Hypercapnia led to a 38 ± 15% (5% CO2) and 77 ± 34% (10% CO2) increase in rCBF. Mechanical stimulation of contralateral vibrissae for 1 min increased rCBF by 14 ± 4%. Changes in rCBF compare favorably with those observed previously in another rodent species, the Sprague–Dawley rat. After placement of a closed cranial window, cerebrovascular reactivity to hypercapnia and whisker stimulation was intact and well maintained during 2-h superfusion with artificial CSF.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3