Origins and Pathways of Cerebrovascular Vasoactive Intestinal Polypeptide-Positive Nerves in Rat

Author:

Suzuki Norihiro1,Hardebo Jan Erik12,Owman Christer1

Affiliation:

1. Department of Medical Cell Research, University of Lund, Sweden

2. Department of Neurology, University of Lund, Sweden

Abstract

In order to clarify the origins and pathways of vasoactive intestinal polypeptide (VlP)-containing nerve fibers in cerebral blood vessels of rat, denervation experiments and retrograde axonal tracing methods (true blue) were used. Numerous VIP-positive nerve cells were recognized in the sphenopalatine ganglion and in a mini-ganglion (internal carotid mini-ganglion) located on the internal carotid artery in the carotid canal, where the parasympathetic greater superficial petrosal nerve is joined by the sympathetic fibers from the internal carotid nerve, to form the Vidian nerve. VIP fiber bridges in the greater deep petrosal nerve and the internal carotid nerve reached the wall of the internal carotid artery. Two weeks after bilateral removal of the sphenopalatine ganglion or sectioning of the structures in the ethmoidal foramen, VIP fibers in the anterior part of the circle of Willis completely disappeared. Very few remained in the middle cerebral artery, the posterior cerebral artery, and rostral two-thirds of the basilar artery, whereas they remained in the caudal one-third of the basilar artery, the vertebral artery, and intracranial and carotid canal segments of the internal carotid artery. One week after application of true blue to the middle cerebral artery, dye accumulated in the ganglion cells in the sphenopalatine, otic and internal carotid mini-ganglion; some of the cells were positive for VIP. The results show that the VIP nerves in rat cerebral blood vessels originate: (a) in the sphenopalatine, and otic ganglion to innervate the circle of Willis and its branches from anterior and caudally and (b) from the internal carotid mini-ganglion to innervate the internal carotid artery at the level of the carotid canal and to some extent its intracranial extensions.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3