Induced Response to Hypercapnia in the Two-Compartment Total Cerebral Blood Volume: Influence on Brain Vascular Reserve and Flow Efficiency

Author:

Keyeux André1,Ochrymowicz-Bemelmans Danielle1,Charlier André A.1

Affiliation:

1. Unit of Cardiovascular Physiology, Université Catholique de Louvain, School of Medicine, Brussels, Belgium

Abstract

This study was undertaken to investigate the mechanisms of CBF increase as induced by hypercapnia. It was achieved in anesthetized rats by determining total cerebral blood volume (TCBV), parenchymal blood (CBV), plasma (CPV), erythrocyte (CEV) volumes and cerebral hematocrit (CHct) as well as CBF at about 40, 60, and 80 mm Hg Paco2. TCBV was measured by a noninvasive blood dilution method using [99mTc]pertechnetate. CBV, CPV, and CEV were measured on isolated brain by 125I-serum albumin and 51Cr-erythrocytes. CBF was measured by both [131I/14C]iodoantipyrine and 57Comicrosphere extractions. The extraparenchymal blood volume (ECBV) was evaluated by subtracting CBV from TCBV. Under normocapnia, ECBV was 2.8 times larger than CBV. Under moderate hypercapnia; ECBV increased by 44%, CBV was not modified, and CBF increased by 52%. These results demonstrate that the main site of vasodilation is located in the extraparenchymal vasculature, which thus acts as a vascular reserve. By contrast, under severe hypercapnia, ECBV remained unchanged, whereas CBV then increased by 17%; CBF simultaneously showed an additional augmentation of either 52 or 309% when diffusible tracer or microspheres were used. This important increase in CBF cannot be explained either by capillary recruitment of closed capillaries or by active diameter lengthening of already open capillaries. The concomitant and great increase in capillary blood velocity was also shown to reduce cerebral flow efficiency, a situation consistent with a “luxury perfusion.”

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3