Multiparametric Imaging of Blood Flow and Metabolism after Middle Cerebral Artery Occlusion in Cats

Author:

Hossmann K.-A.,Mies G.,Paschen W.,Csiba L.,Bodsch W.,Rapin J. R.1,Le Poncin-Lafitte M.1,Takahashi K.

Affiliation:

1. Service de Neurophysiologie cérébrovasculaire, Centre Hospitalier Universitaire Saint-Antoine, Paris, France

Abstract

In anesthetized adult cats, acute stroke was produced by transorbital occlusion of the left middle cerebral artery. A battery of imaging techniques was used for simultaneous evaluation of regional blood flow, glucose utilization, protein synthesis, pH, and the regional tissue content of glucose, ATP, and potassium. The electrophysiological impact of stroke was monitored by EEG frequency analysis and recording of somatosensory evoked potentials. Two hours after vascular occlusion, a close correlation existed between the degree of electrophysiological changes and biochemical alterations, in particular with the extent of tissue acidosis, ATP depletion, decrease of tissue potassium content, and suppression of protein synthesis. However, there was only a poor correlation with blood flow and glucose utilization. Both of these exhibited a greatly inhomogeneous pattern with regions of reduced, normal, or increased rates. In areas remote from the infarct, the content of biochemical substrates was normal but blood flow was reduced globally by ∼50% and glucose utilization by ∼20%. An anatomically defined regional pattern of cerebral or cerebellar diaschisis was not observed. It is concluded that during the acute phase of stroke, imaging of blood flow and glucose utilization does not provide an accurate estimate of the actual functional or metabolic disturbance. For the clinical evaluation of the development or treatment of stroke, in consequence, alternative noninvasive techniques such as imaging of protein synthesis and/or pH may be more relevant.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3