The Brain at High Altitude: Hypometabolism as a Defense against Chronic Hypoxia?

Author:

Hochachka P. W.,Clark C. M.1,Brown W. D.2,Stanley C.,Stone C. K.3,Nickles R. J.4,Zhu G. G.5,Allen P. S.5,Holden J. E.4

Affiliation:

1. Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada

2. Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada

3. Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

4. Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, U.S.A.

5. Department of Applied Physics in Medicine, University of Alberta, Edmonton, Alberta, Canada

Abstract

The brain of hypoxia-tolerant vertebrates is known to survive extreme limitations of oxygen in part because of very low rates of energy production and utilization. To assess if similar adaptations may be involved in humans during hypoxia adaptation over generational time, volunteer Quechua natives, indigenous to the high Andes between about 3,700 and 4,900 m altitude, served as subjects in positron emission tomographic measurements of brain regional glucose metabolic rates. Two metabolic states were analyzed: (a) the presumed normal (high altitude-adapted) state monitored as soon as possible after leaving the Andes and (b) the deacclimated state monitored after 3 weeks at low altitudes. Proton nuclear magnetic resonance spectroscopy studies of the Quechua brain found normal spectra, with no indication of any unusual lactate accumulation; in contrast, in hypoxia-tolerant species, a relatively large fraction of the glucose taken up by the brain is released as lactate. Positron emission tomographic measurements of [18F]2-deoxy-2-fluoro-d-glucose (FDG) uptake rates, quantified in 26 regions of the brain, indicated systematically lower region-by-region glucose metabolic rates in Quechuas than in lowlanders. The metabolic reductions were least pronounced in primitive brain structures (e.g., cerebellum) and most pronounced in regions classically associated with higher cortical functions (e.g., frontal cortex). These differences between Quechuas with lifetime exposure to hypobaric hypoxia and lowlanders, which seem to be expressed to some degree in most brain regions examined, may be the result of a defense adaptation against chronic hypoxia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3