Brain Tissue Concentrations of ATP, Phosphocreatine, Lactate, and Tissue pH in Relation to Reduced Cerebral Blood Flow following Experimental Acute Middle Cerebral Artery Occlusion

Author:

Obrenovitch T. P.1,Garofalo O.1,Harris R. J.1,Bordi L.1,Ono M.1,Momma F.1,Bachelard H. S.1,Symon L.1

Affiliation:

1. Gough-Cooper Department of Neurological Surgery, Institute of Neurology, and Division of Biochemistry, U.M.D.S., St. Thomas' Hospital Medical School, London, England

Abstract

Local CBF (LCBF) was compared with the corresponding local tissue concentration of ATP, phosphocreatine (PCr), and lactate in anaesthetized baboons subjected to focal ischaemia produced by middle cerebral artery occlusion (MCAO). LCBF hydrogen electrodes were implanted in cortical regions where MCAO had been previously shown to produce severe and penumbral ischaemia and in posterior regions where blood flow is not altered. Metabolites were assayed in small tissue samples collected either by cryoprobe biopsy in the regions where LCBFs were measured (series 1) or by sampling appropriate regions of the rapidly frozen brain (series 2). Subsequent topographical study of brain tissue pH with umbelliferone was performed in this latter series. The results from these two series are compared and discussed in terms of the more appropriate way to perform simultaneous electrode measurements and analysis of tissue samples for studying focal ischaemia in the primate brain. They confirm that the concentrations of ATP and PCr decrease, and that lactate level increases, with decreasing blood flow. These metabolites tended to change more rapidly below a blood flow threshold, rather than showing a steady decrease as the blood flow was reduced, although the variability of the data precluded us from establishing this with confidence. Topographical study of tissue pH often showed sharp boundaries between zones of very low pH and regions with normal pH.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3