Peptidergic Innervation in the Cerebral Blood Vessels of the Guinea Pig: An Immunohistochemical Study

Author:

Nakakita Kazuo1

Affiliation:

1. Department of Neurological Surgery, Wakayama Medical College, Wakayama City, Japan

Abstract

The distribution of peptidergic nerve fibers containing substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), and neuropeptide Y (NPY) in the cerebral arteries and veins of the guinea pig was studied using immunohistochemical techniques. The ultrastructure of these immunoreactive nerve terminals was also compared. The cerebral arteries were innervated by abundant peptidergic nerve fibers with characteristic running patterns, i.e., SP fibers in a meshwork, VIP and NPY fibers in a spiral fashion. Only CGRP fibers showed both meshwork and spiral patterns. In the cerebral veins, the abundant SP fibers innervated the cortical veins, deep cerebral veins, and dural sinuses. However, CGRP, VIP, and NPY fibers in extremely low density were noted merely in the cortical veins. Electron microscopic observations demonstrated that SP-immunoreactive nerve terminals existed apart from the arterial smooth muscle cells, while VIP- and NPY-immunoreactive nerve terminals adjoined them. As for CGRP nerve terminals, some existed close to the arterial smooth muscle cells, and others were found some distance from them. These morphological characteristics observed by light and electron microscopy suggest that SP fibers are not related directly to the vasomotor function, but VIP and NPY fibers are, and that CGRP fibers have a more complicated function. The distribution patterns of the peptidergic nerve fibers are consistent with the suggestion that vasomotor peptidergic fibers may function actively on cerebral arteries and passively on cerebral veins and that SP fibers regarded as sensory fibers may provide information regarding cerebral vascular conditions, innervating every part of both cerebral arteries and veins.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3