Reduced Local Cerebral Blood Flow in Periventricular White Matter in Experimental Neonatal Hydrocephalus—Restoration with CSF Shunting

Author:

da Silva Marcia C.,Michowicz Shalom,Drake James M.,Chumas Paul D.,Tuor Ursula I.1

Affiliation:

1. Division of Neonatology, The Hospital for Sick Children, University of Toronto, Toronto, Canada

Abstract

The extent to which the reduction in CBF occurring in hydrocephalus is a primary or secondary event in the pathogenesis of the brain injury that ensues has not been clearly established. This is particularly true in neonatal hydrocephalus, where the disorder is most common, and where timing of the treatment of the developing nervous system is so important. We investigated the changes in local CBF (lCBF) in an animal model of severe progressive neonatal hydrocephalus before and after CSF shunting. Hydrocephalus was induced in 27 1-week-old kittens by percutaneous injection of 0.05 ml of 25% kaolin into the cisterna magna. Fourteen littermates acted as controls. The lCBF was measured by 14C-iodoantipyrine quantitative autoradiography after 1 week in 15 animals (8 hydrocephalic, 7 controls) and after 3 weeks in 26 animals (19 hydrocephalic, 7 controls) following induction of hydrocephalus. Twelve of the 3-week hydrocephalic group received a ventriculoperitoneal shunt 10 days following kaolin injection. At 1 week following induction of hydrocephalus, lCBF was globally reduced in cortical gray matter and white matter as well as deep subcortical structures. The maximum reduction was in the parietal white matter, to 37% of control levels. At 3 weeks a significant reduction in lCBF persisted only in the white matter (parietal, occipital, and corpus callosum; average, 42% of control levels), whereas cortical gray and deep subcortical structures had returned to normal levels spontaneously. lCBF was normal in 3-week hydrocephalic shunted animals in all areas. CSF shunting restores the fall in lCBF in the periventricular white matter in this model. These findings are consistent with previous studies in the same model demonstrating derangement of high-energy phosphate metabolism and white matter anaerobic glycolysis with hydrocephalus and resolution with shunting.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3