Affiliation:
1. Laboratory for Experimental Brain Research, University Hospital, University of Lund, Lund, Sweden
Abstract
This study addresses the question of whether the cyclooxygenase inhibitors indomethacin and diclofenac and the glucocorticosteroid dexamethasone ameliorate neuronal necrosis following cerebral ischemia. In addition, since these drugs inhibit the production of prostaglandins and depress phospholipase A2activity, respectively, the importance of free fatty acids (FFAs) on the development of ischemic neuronal damage was assessed. Neuronal damage was determined in the rat brain at 1 week following 10 min of forebrain ischemia. The cyclooxygenase inhibitors, whether given before or after ischemia, failed to alter the brain damage incurred. Animals given dexamethasone were divided into three groups and the drug was administered at a constant dosage of 2 mg/kg: (a) 2 days, 1 day, and 3 h intraperitoneally before (chronic pretreatment), (b) 3 h intraperitoneally before (acute pretreatment), and (c) 5 min intravenously and 6 h and 1 day intraperitoneally after (chronic posttreatment) induction of ischemia. Acute pretreatment did not affect the histopathological outcome. Chronic posttreatment of animals with dexamethasone ameliorated the damage inflicted on the caudate nucleus, but had no effect on other brain areas investigated. Unexpectedly, the chronic pretreatment aggravated the brain damage and caused seizures following ischemia. Histopathological data showed massive neuronal damage in these brains. The accumulation of FFA levels during ischemia was markedly suppressed, and the decrease in the energy charge was curtailed by chronic pretreatment with dexamethasone. However, brain glucose levels in control animals and lactic acid concentrations following 10 min of ischemia were significantly higher both in the cerebral cortex and in the hippocampus of dexamethasone-treated animals. These results suggest that aggravation of neuronal necrosis by chronic dexamethasone pretreatment could be ascribed to lactic acidosis due to hyperglycemia in combination with an action of dexamethasone on glucocorticoid receptors in the brain.
Subject
Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology
Cited by
170 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献