The Effect of α-Adrenergic Receptor Blockers Prazosin and Yohimbine on Cerebral Metabolism and Biogenic Amine Content of Traumatized Brain

Author:

Inoue Masaru1,McHugh Michael1,Pappius Hanna M.1

Affiliation:

1. Goad Unit, Donner Laboratory of Experimental Neurochemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

Abstract

Widespread decrease in local cerebral glucose utilization (LCGU) previously shown to occur 3 days after a focal freezing lesion was interpreted as reflecting a depression of functional activity in the affected areas. In parallel experiments, cortical norepinephrine (NE) content of traumatized brain was found to be decreased. The effects of prazosin (PZ), an α1-adrenergic receptor blocker, and yohimbine (YOH), an α2-blocker, on glucose use and biogenic amine content of lesioned rat brain were studied to determine if the changes in the noradrenergic system associated with injury are of functional importance, to identify the receptors that may be involved in mediating the action of NE in injured brain, and to look for evidence of interaction between the noradrenergic and the serotonergic systems in traumatized brain. PZ (1 mg/kg) given 30 min before the lesion ameliorated the subsequent metabolic cortical depression seen in untreated animals. PZ given for 3 days starting before the lesion (3 mg/kg/day) was also effective in normalizing LCGU in areas where it was depressed by lesioning, despite the fact that this regimen induced significant global decrease in LCGU in normal animals. Once cortical metabolic depression had developed 3 days after the lesion, it could not be modified by PZ. YOH was less effective than PZ and was so only when given for 3 days (22.5 mg/kg/day in three divided doses). PZ (3 mg/kg/day in three divided doses) slightly but significantly decreased the accumulation of the serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid in the traumatized hemisphere. These results provide evidence that blockage of α1adrenergic receptors prevents the development of cortical dysfunction associated with brain trauma. This implies that the noradrenergic system plays a role in the functional consequences of injury and that this effect is, at least in part, mediated by α1-adrenergic receptors. Furthermore, α1-adrenergic receptor blockage appears to modulate cortical turnover of 5-HT, previously also implicated in functional consequences of brain injury. The data are compatible with inhibitory effects of NE in the cortex and suggest a potential of α1-adrenergic blockage in development of novel therapeutic approaches to brain injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3