Fructose-1,6-Bisphosphate Protects Astrocytes from Hypoxic Damage

Author:

Gregory George A.1,Yu Albert C. H.1,Chan Pak H.1

Affiliation:

1. Departments of Neurology, Anesthesia, and the Cardiovascular Research Institute, University of California, San Francisco, California, U.S.A.

Abstract

To determine the effects of glucose and fructose-1,6-bisphosphate (FDP) on hypoxic cell damage, primary cultures of astrocytes were incubated for 18 h in an air-tight chamber that had been flushed with 95% N2/5% CO2for 15 min before it was sealed. Cultures containing 7.5 m M glucose without FDP or FDP without glucose showed evidence of significant cell injury after 18 h of hypoxia (increased lactate dehydrogenase content in the culture medium; cell edema and disruption by phase-contrast microscopy). Cultures exposed to glucose + FDP had normal lactate dehydrogenase concentrations and appeared normal microscopically. Maximal protection of hypoxic cells occurred at 6.0 m M FDP. Lactate concentrations of the culture medium of hypoxic cells increased 2.5 times above normoxic control values when glucose was present, but neither FDP alone nor glucose + FDP caused the lactate concentrations to increase further. This implies that anaerobic glycolysis was not increased by adding FDP to the medium. Cell volumes (water space) measured with [14C]-3-0-methyl-D-glucose were normal with glucose + FDP in the culture medium of hypoxic cells but were significantly larger than normal when glucose alone was present. Increases in cell volume paralleled changes in lactate dehydrogenase in the culture medium. Uptake of [14C]FDP occurred rapidly in normoxic cells and was maximal after 5 min of incubation. The data indicate that the presence of glucose + FDP in the culture medium protects primary cultures of hypoxic astrocytes from cell damage.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3