A Kinetic Evaluation of Blood—Brain Barrier Permeability in Human Brain Tumors with [68Ga]EDTA and Positron Computed Tomography

Author:

Hawkins Randall A.,Phelps Michael E.,Huang Sung-Cheng,Wapenski Joseph A.,Grimm Peter D.1,Parker Robert G.1,Juillard Guy1,Greenberg Peter1

Affiliation:

1. Department of Radiation Oncology, Divisions of Biophysics and Nuclear Medicine, UCLA School of Medicine, Los Angeles, California, U.S.A.

Abstract

Twelve patients with primary and metastatic brain tumors were evaluated with [68Ga]ethylenediaminetetraacetate (EDTA) and positron computed tomography. Using a two-compartment tracer kinetic model, foward ( K1) and reverse ( k2) rate constants for molecular diffusion across the blood–brain barrier (BBB) were obtained and averaged 0.0029 ± 0.0016 (mean ± SD) ml/min/g for K1 and 0.0310 ± 0.0156 min−1 for k2. Most tracer kinetic models are based on the assumption that tissue radioactivity contains no vascular component or require independent measures of cerebral blood volume (CBV) which are then subtracted from the measure tissue activity. The model in this work differs from that approach by assuming a vascular compartment in the tissue kinetic data. This vascular parameter is estimated from sequential measurements of activity concentrations in regions with an intact BBB or from measurements of 68Ga concentrations in the plasma (the input function). Thus, this approach does not require the assumption of a zero vascular contribution, does not require a separate measurement of CBV, and uses the criteria of constrained estimation to provide estimates of the local CBV and molecular diffusion through the BBB. Estimates of the relative CBV of the lesions in four studies (three subjects) with [68Ga]EDTA correlated well with those obtained with the C15O hemoglobin technique (correlation coefficient of 0.97).

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3