Postischemic Blockade of AMPA but Not NMDA Receptors Mitigates Neuronal Damage in the Rat Brain following Transient Severe Cerebral Ischemia

Author:

Nellgård B.1,Wieloch T.1

Affiliation:

1. Laboratory for Experimental Brain Research, University Hospital, Lund University, Lund, Sweden

Abstract

Glutamatergic transmission is an important factor in the development of neuronal death following transient cerebral ischemia. In this investigation the effects of N-methyl-d-aspartate (NMDA) and non-NMDA receptor antagonists on neuronal damage were studied in rats exposed to 10 min of transient cerebral ischemia induced by bilateral common carotid occlusion combined with hypotension. The animals were treated with a blocker of the ionotropic quisqualate or α-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptor, 2.3-dihydroxy-6-nitro-7-sulfamoyl-benzo( F)quinoxaline (NBQX), given postischemia as an intraperitoneal bolus dose of 30 mg kg−1 followed by an intravenous infusion of 75 μg min−1 for 6 h, or with the noncompetitive NMDA receptor blocker dizocilpine(MK-801) given 1 mg kg−1 i.p. at recirculation and 3 h postischemia, or with the competitive NMDA receptor antagonist dl-( E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP 40116), 5 mg kg−1, given intraperitoneally at recirculation. Treatment with NBQX provided a significant reduction of neuronal damage in the hippocampal CA1 area by 44–69%, with the largest relative decrease in the temporal part of the hippocampus. In neocortex a significant decrease in the number of necrotic neurons was also noted. No protection could be seen following postischemic treatment with dizocilpine or CGP 40116. Our data demonstrate that AMPA but not NMDA receptor antagonists decrease neuronal damage following transient severe cerebral ischemia in the rat and that the protection by NBQX may be dependent on the severity of the ischemic insult. We propose that the AMPA receptor–mediated neurotoxicity could be due to ischemia-induced changes in the control mechanisms of AMPA receptor–coupled processes or to changes of AMPA receptor characteristics.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3