Quantification of Neuroreceptors in the Living Human Brain. II. Inhibition Studies of Receptor Density and Affinity

Author:

Wong Dean F.,Gjedde Albert1,Wagner Henry N.,Dannals Robert F.,Douglass Kenneth H.,Links Jonathan M.,Kuhar Michael J.2

Affiliation:

1. Medical Physiology Department A, Panum Institute, Copenhagen University, Copenhagen, Denmark

2. Neuroscience, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A.

Abstract

A method for estimating receptor density ( Bmax) in the living human brain by positron emission tomography was exemplified by a ligand, 3- N-[11C]methylspiperone ([11C]NMSP), that binds to D2 dopamine receptors with high affinity. The ligand binds essentially irreversibly (i.e., with very little dissociation) to the receptors during the 2-h scanning period. Transfer constants were estimated at steady state. In a previous article, we presented a method for the determination of k3, the rate of binding of the labeled ligand. In the present work, we varied k3 by reducing the number of available receptors with a previously administered receptor blocking agent, haloperidol. We calculated a receptor density of 9.2 pmol g−1 in the caudate nucleus of four normal volunteers, and an inhibitory constant of haloperidol of 1.4 n M by comparing tracer accumulation in the absence and the presence of the blocking agent. The values agreed with measurements of NMSP receptor density and haloperidol inhibitory potency in vitro in brain homogenates from human autopsy material.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3