Sex Differences in Postischemic Neuronal Necrosis in Gerbils

Author:

Hall Edward D.1,Pazara Kay E.1,Linseman Kelley L.1

Affiliation:

1. Central Nervous System Diseases Research, The Upjohn Company, Kalamazoo, Michigan, U.S.A.

Abstract

Twenty-four hour postischemic neuronal necrosis was compared in male vs. female Mongolian gerbils subjected to a 3-h period of severe incomplete hemispheric ischemia produced by unilateral carotid occlusion. The incidence of stroke-prone males was 42.9% versus 26.7% for the females. Among the stroke-prone animals, the males displayed significantly greater neuronal necrosis at 24 h after ischemia compared to the females in the cerebral cortex and CA, region of the hippocampus. In the CA, region of the stroke-prone males, only 2.0% of the normal neuronal population remained by 24 h compared to 36.8% in the stroke-prone females (p < 0.02). In the cerebral cortex, the males had only 19.9% of normal versus 58.2% in the females (p < 0.05). In a second series of mechanistic experiments, no differences in cortical blood flow (CBF) were disclosed between preselected male and female stroke-prone animals before, during, or for 2 h after ischemia. As with the CBF, the extent of cortical extracellular hypocalcia during ischemia did not differ significantly. However, the degree of postischemic recovery of cortical extracellular calcium was significantly better in the females from 30 min to 2 h after reperfusion. In the same experiments, hemispheric vitamin E levels were measured at the 2 h time point as an index of postischemic brain lipid peroxidation. No difference in baseline vitamin E levels was observed between male and female sham-operated gerbils. In the males subjected to 3 h of ischemia plus 2 h of reperfusion, the hemispheric vitamin E decreased by 43.5% compared to the sham-operated males. In contrast, the females displayed only a 4.2% decline (p < 0.05 versus males). Previous studies showing the protective efficacy of antioxidants in this model have suggested an important role of oxygen radical-induced lipid peroxidation. Thus, it is proposed that the lesser ischemic vulnerability of females may be based upon an antioxidant effect of endogenous estrogen. Indeed, estrogen was found to be a more potent inhibitor of iron-catalyzed lipid peroxidation in brain tissue than vitamin E.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 233 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3