Effects of Traumatic Brain Injury on Cerebral High-Energy Phosphates and pH: A31P Magnetic Resonance Spectroscopy Study

Author:

Vink Robert12,McIntosh Tracy K.1,Weiner Michael W.23,Faden Alan I.4

Affiliation:

1. Center for Neural Injury, Veterans Administration Medical Center, San Francisco, California, U.S.A.

2. Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California, U.S.A.

3. Department of Medicine and Radiology, University of California

4. Department of Neurology, Veterans Administration Medical Center, San Francisco, California, U.S.A.

Abstract

Traumatic injuries to the CNS produce tissue damage both through mechanical disruption and through more delayed autodestructive processes. Delayed events include various biochemical changes whose nature and time course remain to be fully elucidated. Magnetic resonance spectroscopy (MRS) techniques permit repeated, noninvasive measurement of biochemical changes in the same animal. Using phosphorus MRS, we have examined certain biochemical responses of rats over an 8-h period following lateralized brain injury (1.5–2.5 atmospheres) using a standardized fluid-percussion model recently developed in our laboratory. Following injury, the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) showed a biphasic decline: The first decline reached its nadir (4.8 ± 0.4 to 2.8 ± 0.7) by 40 min post-trauma with recovery by 100 min, followed by a second decline by 2 h that persisted for the remaining 6-h observation period (mean 2.5 ± 0.5). The first, but not the second, decrease in PCr/Piwas associated with tissue acidosis (pH 7.10 ± 0.03 to 6.86 ± 0.11). No changes in ATP occurred at any time during the injury observation period. Such changes may be indicative of altered mitochondrial energy production following brain injury, which may account for the reduced capacity of the cell to recover from traumatic injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3