Cortical Vasodilatation Produced by Vasoactive Intestinal Polypeptide (VIP) and by Physiological Stimuli in the Cat

Author:

Yaksh Tony L.,Wang Jia-Yi,Go V. L. W.1,Harty Gail J.

Affiliation:

1. Department of Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota, U.S.A.

Abstract

In chloralose-urethanized cats, vasoactive intestinal peptide (VIP), applied by superfusion in steady-state concentration (10−10–10−6 M) onto cortical vessels in situ resulted in a rapid concentration-dependent vasodilatation in vessels that were mildly constricted by prostaglandin F (PGF) (5 × 10−5 M) or hypocarbia (PaCO2 = 26). The maximum dilatation produced by VIP (10−6 M) was about 60% over baseline in pial arteries and 40% in pial veins. Blockade of local neuronal activity with tetrodotoxin (TTX) (10−5 M) had no effect on the VIP-evoked dilation of pial vessels. Activation of the cortex by either direct electrical stimulation or indirectly by stimulation of the mesencephalic reticular formation (MRF) resulted in a rapid dilatation of pial arterioles and venules. The vasodilatory effects of VIP and of cortical activation via direct cortical stimulation were not blocked by phentolamine (10−4 M), propranolol (10−4 M), atropine (10−4 M), or naloxone (10−4 M), indicating that the stimulated vasodilatation was not mediated by adrenergic, cholinergic, or opiate receptors. The dilatory effects of MRF, but not direct cortical stimulation, were not blocked by TTX. VIP antiserum (1:25) preincubated in cortical cups had no effect on resting vessel diameter, but resulted in a significant, though subtotal, reduction in the vasodilatation elicited by direct cortical and MRF stimulation. Normal rabbit sera or VIP antiserum preincubated with saturating amounts of VIP were ineffective. In similar experiments, pial arteriolar and venular dilation evoked by hypercarbia was not attenuated by cortically applied VIP antisera. These observations suggest that pial dilation evoked by local increases in neuronal activity may be mediated in part by the local release of VIP from intrinsic neurons. Such a substrate would define a close obligatory coupling between local neuronal activation and local perfusion, such that nutritive flow could be enhanced prior to the onset of any metabolic deficit.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3