Immunohistochemical Localization of Superoxide Dismutase in the Hippocampus following Ischemia in a Gerbil Model of Ischemic Tolerance

Author:

Kato Hiroyuki,Kogure Kyuya1,Araki Tsutomu,Liu Xiao-Hong,Kato Kanefusa2,Itoyama Yasuto

Affiliation:

1. Foundation for Brain and Nerve Diseases and Institute of Neuropathology, Kumagaya

2. Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Japan

Abstract

Pretreatment of the gerbil brain with a 2-min period of sublethal ischemia protects against neuronal damage following a subsequent 3-min period of ischemia, which normally destroys pyramidal neurons in the CA1 region of the hippocampus. To clarify the role of superoxide dismutase (SOD) in this ischemic tolerance, we immunohistochemically investigated the alterations in copper-zinc SOD (CuZnSOD) and manganese SOD (MnSOD) in the gerbil hippocampus following 3-min ischemia with or without the first mild ischemia. Normal hippocampus showed an intense CuZnSOD immunostaining in pyramidal neurons but relatively less MnSOD immunostaining. MnSOD, but not CuZnSOD, immunoreactivity increased after the first ischemia. Both CuZnSOD and MnSOD immunoreactivities decreased throughout the hippocampus 4 h after 3 min of ischemia both with and without the first ischemia. The immunostaining recovered in resistant regions (CA3 and dentate gyrus) after 1 day in both groups and in the pretreated CA, after 2 days. Without pretreatment, however, the immunostaining never recovered in the vulnerable CA, region. The results suggest that ischemic tolerance is induced in part by enhanced synthesis of MnSOD in the tolerance-acquired hippocampus. Both CuZnSOD and MnSOD immunoreactivities decreased after the second ischemia even in the pretreated hippocampus in the early reperfusion periods, but ischemic tolerance facilitated the recovery from the postischemic reductions in SOD immunoreactivity.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3