Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate

Author:

Ogamino Shohei,Yamamichi Moeko,Sato Ken,Ishitani TohruORCID

Abstract

AbstractWnt/β-catenin signaling plays a major role in regulation of embryogenesis, organogenesis, and adult tissue homeostasis and regeneration. However, the roles played by Wnt/β-catenin and the spatiotemporal regulation of its activity throughout life, including during aging, are not fully understood. To address these issues, we introduced a Wnt/β-catenin signaling sensitive reporter into African turquoise killifish (Nothobranchius furzeri), a naturally ultra-short-lived fish that allows for the analysis of its whole life within a short period of time. Using this reporter killifish, we unraveled the previously unidentified dynamics of Wnt/β-catenin signaling during development and aging. Using the reporter strain, we detected Wnt/β-catenin activity in actively developing tissues as reported in previous reports, but also observed activation and attenuation of Wnt/β-catenin activity during embryonic reaggregation and diapause, respectively. During the aging process, the reporter was activated in the choroidal layer and liver, but its expression decreased in the kidneys. In addition, the reporter also revealed that aging disrupts the spatial regulation and intensity control of Wnt/β-catenin activity seen during fin regeneration, which interferes with precise regeneration. Thus, the employed reporter killifish is a highly useful model for investigating the dynamics of Wnt/β-catenin signaling during both the developmental and aging process.

Funder

Takeda Science Foundation

Secom Science and Technology Foundation

MEXT | Japan Society for the Promotion of Science

KOSE Cosmetology Foundation, The Nippon Foundation - Osaka University Project for Infectious Disease Prevention

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3