Machine learning prediction of hepatic steatosis using body composition parameters: A UK Biobank Study

Author:

Boncan Delbert Almerick T.ORCID,Yu Yan,Zhang Miaoru,Lian Jie,Vardhanabhuti VarutORCID

Abstract

AbstractNon-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease worldwide, yet detection has remained largely based on surrogate serum biomarkers, elastography or biopsy. In this study, we used a total of 2959 participants from the UK biobank cohort and established the association of dual-energy X-ray absorptiometry (DXA)-derived body composition parameters and leveraged machine learning models to predict NAFLD. Hepatic steatosis reference was based on MRI-PDFF which has been extensively validated previously. We found several significant associations with traditional measurements such as abdominal obesity, as defined by waist-to-hip ratio (OR = 2.50 (male), 3.35 (female)), android-gynoid ratio (OR = 3.35 (male), 6.39 (female)) and waist circumference (OR = 1.79 (male), 3.80 (female)) with hepatic steatosis. Similarly, A Body Shape Index (Quantile 4 OR = 1.89 (male), 5.81 (female)), and for fat mass index, both overweight (OR = 6.93 (male), 2.83 (female)) and obese (OR = 14.12 (male), 5.32 (female)) categories were likewise significantly associated with hepatic steatosis. DXA parameters were shown to be highly associated such as visceral adipose tissue mass (OR = 8.37 (male), 19.03 (female)), trunk fat mass (OR = 8.64 (male), 25.69 (female)) and android fat mass (OR = 7.93 (male), 21.77 (female)) with NAFLD. We trained machine learning classifiers with logistic regression and two histogram-based gradient boosting ensembles for the prediction of hepatic steatosis using traditional body composition indices and DXA parameters which achieved reasonable performance (AUC = 0.83–0.87). Based on SHapley Additive exPlanations (SHAP) analysis, DXA parameters that had the largest contribution to the classifiers were the features predicted with significant association with NAFLD. Overall, this study underscores the potential utility of DXA as a practical and potentially opportunistic method for the screening of hepatic steatosis.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3