Abstract
AbstractTriple-negative breast cancers (TNBC) frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. However, less than 15% of TNBC patients were found to carry BRCA1 mutation, indicating that there are other mechanisms regulating BRCA1-deficient in TNBC. In the current study, we shown that overexpression of TRIM47 correlates with progression and poor prognosis in triple-negative breast cancer. Moreover, we demonstrated that TRIM47 directly interacts with BRCA1 and induces ubiquitin-ligase-mediated proteasome turnover of BRCA1, subsequently leads to a decrease of BRCA1 protein levels in TNBC. Moreover, the downstream gene expression of BRCA1, such as p53, p27, p21 was significantly reduced in the overexpression of TRIM47 cell lines but increased in TRIM47-deleted cells. Functionally, we found that overexpression of TRIM47 in TNBC cells confers an exquisite sensitivity to olaparib, an inhibitor of poly-(ADP-ribose)-polymerase (PARP), but TRIM47 inhibition significantly confers TNBC cells resistance to olaparib both in vitro and in vivo. Furthermore, we showed that overexpression of BRCA1 significant increase the olaparib resistance in TRIM47-overexpression-induced PARP inhibitions sensitivity. Taken together, our results uncover a novel mechanism for BRCA1-deficient in TNBC and targeting TRIM47/BRCA1 axis may be a promising prognostic factor and a valuable therapeutic target for TNBC.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Molecular Biology
Reference39 articles.
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68:394–424.
2. Castaneda SA, Strasser J. Updates in the treatment of breast cancer with radiotherapy. Surg. Oncol Clin North Am. 2017;26:371–82.
3. Maughan KL, Lutterbie MA, Ham PS. Treatment of breast cancer. Am Fam Physician. 2010;81:1339–46.
4. Peart O. Breast intervention and breast cancer treatment options. Radiol. Technol. 2015;86:535M–58M.
5. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109:1721–8.